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Introduction 

This is a series of LAMMPS run that calculates the potential energy from a system that is arranged in a B1 lattice 

structure. The B1 structure is similar to the crystal structure of NaCl. The simulation box consists of charges arranged in 

the B1 lattice structure with separation distance  ro of 2.0  hence the lattice constant a is 4.0.  

The objective is to test the accuracy of the PPPM
1
 implementation in LAMMPS by comparing the value of the 

electrostatic potential energy calculated from the analytical Madelung constant from the normalized electrostatic energy 

that is calculated by LAMMPS with PPPM. 

Method 

The simulation box consists of 1000 LJ beads arranged in a B1 cubic lattice structure with a separation distance of 2. 500 

beads are positively charged and the other 500 is negatively charged (See Fig. 1). The charges are arranged alternately 

such that one cation is adjacent to six anions and vice versa. The forces and velocities are not time integrated because only 

the potential energy is required. This is achieved by using a “run 0” in the LAMMPS input file. Several “run 0’s” are used 

with varying target accuracy for the “kspace_style pppm” and kspace cutoff in “lj/cut/coul/long”. The analytical value of 

the Madelung constant, Ma is 1.747564594633182
2
. 

 

The electrostatic potential energy of a cation at a site ri is the product of its charge with the potential acting at its site is: 
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Where Mi+ is the Madelung constant for the cations. In reduced units: 
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For this system ro = a/2.0 = 2 , zi= 1.0 and q* = 1.0. Hence the Eel,i is: 


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A similar method is done to calculate the Madelung constant for the anions and would result in the same value. 

 

Figure 1. Simulation box showing the B1 lattice structure with alternating placement of 

cations(red) and anions (blue). The lattice constant a is equal to 4.0. 
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For an ionic solid, the sum of contributions of cations and anions of a crystal would then be the sum of the partial 

Madulung constants of cation and anion subarrays
3
. Hence the total Madelung constant is,  

  iia MMM
ielE ,2 +

ielE ,2 = ielE ,4 where ielE , would be the normalize potential energy that will be outputted by 

LAMMPS. 

Thus, in order to compare the results of the “run 0” LAMMPS run with the analytical expected value of the electrostatic 

energy, we should divide the analytical Madelung constant, Ma by 4 ( 4/
,, aanalyticaliel ME  ). The expected normalized 

electrostatic potential energy up to 15 decimal places is 0.436891148658295 kBT. 

 

Results and Discussions 

Table 1  shows the target accuracy value,  the LAMMPS potential energy output from different near field cutoffs, the 

absolute value of the difference of the between the LAMMPS calculated energy  to the electrostatic potential energy 

calculated from the Madelung constant and the estimated RMS
4
 calculated by LAMMPS. 

Table 1 

Target 

Accuracy 

Cutoff = 6 Cutoff = 8 Cutoff = 10 

 RMS ielE ,  
* RMS ielE ,  

* RMS ielE ,  
* 

1.00E-01 5.641E-02 0.316353 4.523E-02 4.886E-02 0.35422 8.267E-02 5.082E-02 0.391665 4.523E-02 

5.00E-02 3.221E-02 0.373343 1.780E-02 2.323E-02 0.40338 3.351E-02 2.495E-02 0.419089 1.780E-02 

1.00E-02 4.414E-03 0.429696 8.856E-04 1.922E-03 0.43504 1.851E-03 2.243E-03 0.436006 8.856E-04 

5.00E-03 2.896E-03 0.432315 8.856E-04 1.922E-03 0.43504 1.851E-03 2.243E-03 0.436006 8.856E-04 

1.00E-03 5.097E-04 0.436167 1.091E-04 3.311E-04 0.43664 2.507E-04 3.947E-04 0.436782 1.091E-04 

5.00E-04 2.254E-04 0.436584 6.252E-05 3.311E-04 0.43664 2.507E-04 2.467E-04 0.436829 6.252E-05 

1.00E-04 6.156E-05 0.436812 7.524E-06 5.331E-05 0.436859 3.200E-05 3.966E-05 0.436884 7.524E-06 

5.00E-05 3.620E-05 0.436845 5.424E-06 3.315E-05 0.436872 1.880E-05 2.965E-05 0.436886 5.424E-06 

1.00E-05 6.240E-06 0.436883 7.487E-07 5.404E-06 0.436889 2.449E-06 4.833E-06 0.43689 7.487E-07 

5.00E-06 3.702E-06 0.436887 6.237E-07 4.060E-06 0.436889 1.799E-06 4.033E-06 0.436891 6.237E-07 

1.00E-06 7.861E-07 0.43689 1.237E-07 9.035E-07 0.436891 3.487E-07 8.080E-07 0.436891 1.237E-07 

*
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Figure 2 summarizes the results tabulated in Table 1. A similar simulation run is done for a box that is 101010 
3
. This 

is to see the effect of density in the PPPM calculation of the electrostatic potential energy. The results for this run are 

shown in figure 3. 

 

 

The implementation of PPPM in LAMMPS can correctly recover the electrostatic potential energy based on the Madelung 

constant. For a system with a reduced density of  0.125 
-3

, the near field cutoff of 10 has the least value of  (error) and 

specifying a target accuracy of  1x10
-4

 in the “kspace_style” argument  results in an error or  in the order of 1x10
-5

 for 

the electrostatic potential energy.  

To comment on the probable result for more dense systems, when there are more neighboring particles, this result might 

reverse and a near field cutoff that is less than 10  might get a lower value of . The reason for this is there would be 

more contribution to the potential energy that is calculated in real space as opposed to the inverse space. For the system 

with reduced density of 1.0
-3

, the near field cutoff of 8 has the least value of  (error) as shown in figure 3. The user is 

 

Figure 3. Dependence of  to the target accuracy for a simulation box with reduced density, 

=1.0
-3

 and lattice constant,a=2. 

 

Figure 2. Dependence of  to the target accuracy (a) and dependence of  to the estimated 

RMS value (b) for a simulation box with reduced density, =0.125
-3

 and lattice 

constant,a=4. 



advised to check what is the optimal near field cutoff for the desired error in the potential energy calculation for a given 

system before proceeding to do production runs. For inhomogeneous systems, e.g. interfaces, a test run is strongly 

advised. Furthermore, specifying very small target accuracy is computationally expensive and the user is advised to find 

the best value for the near field cutoff with respect to desired accuracy and simulation time. 

Conclusions 

The implementation of PPPM in LAMMPS can correctly recover the electrostatic potential energy based on the Madelung 

constant. For a system with a reduced density of  0.125 
-3

, the near field cutoff of 10 has the least value of  (error) and 

specifying a target accuracy of  1x10
-4

 in the “kspace_style” argument  results in an error or  in the order of 1x10
-5

 for 

the electrostatic potential energy. For the more dense system, the system with reduced density of 1.0
-3

, the near field 

cutoff of 8 has the least value of  (error). The user is advised to check what is the optimal near field cutoff with respect 

to the desired error in the potential energy and the simulation time for a given system before proceeding to do production 

runs. 
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